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Abstract 8	

Recent efforts have led to the development of the local inertia formulation (INER) for an 9	

accurate but still cost-efficient representation of surface water dynamics, compared to the widely 10	

used kinematic wave equation (KINE). In this study, both formulations are evaluated over the 11	

Amazon basin in terms of computational costs and accuracy in simulating streamflows and water 12	

levels through synthetic experiments and comparisons against ground-based observations. 13	

Varying time steps are considered as part of the evaluation and INER at 60-second time step is 14	

adopted as the reference for synthetic experiments. Five hybrid (HYBR) realizations are 15	

performed based on maps representing the spatial distribution of the two formulations that 16	

physically represent river reach flow dynamics within the domain. Maps have fractions of KINE 17	

varying from 35.6% to 82.8%. KINE runs show clear deterioration along the Amazon river and 18	

main tributaries, with maximum RMSE values for streamflow and water level reaching 19	
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7827m3.s-1 and 1379cm near the basin’s outlet. However, KINE is at least 25% more efficient 20	

than INER with low model sensitivity to longer time steps. A significant improvement is 21	

achieved with HYBR, resulting in maximum RMSE values of 3.9-292m3.s-1 for streamflows and 22	

1.1-28.5cm for water levels, and cost reduction of 6-16%, depending on the map used.  Optimal 23	

results using HYBR are obtained when the local inertia formulation is used in about one third of 24	

the Amazon basin, reducing computational costs in simulations while preserving accuracy. 25	

However, that threshold may vary when applied to different regions, according to their 26	

hydrodynamics and geomorphological characteristics. 27	

1. Introduction 28	

Being able to accurately simulate surface water dynamics is essential for understanding their 29	

impacts on regional and global climate and nutrient cycles, determining present and future water 30	

availability for human activities and minimizing impacts of extreme events. For these reasons, 31	

numerous efforts have led to the development of models and formulations capable of simulating 32	

rivers and floodplains at different scales. The Saint-Venant equations, which represent the one-33	

dimensional gradually varied unsteady flow in open channels through simplifications applied to 34	

the Navier-Stokes equations, provide the most complete 1-D description of river hydrodynamics. 35	

They are based on the mass and the momentum conservation laws, respectively, as follows 36	

(Cunge et al., 1980): 37	
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where Q [m3.s-1] is streamflow, t [s] is time, x [m] is river longitudinal space coordinate, h [m] is 41	

river water depth, g [m.s-2] is acceleration due to gravity, A [m2] is the cross sectional flow area 42	

perpendicular to the flow direction and i0 [m.m-1] and if [m.m-1] are the bed slope and friction 43	

slope in the x-direction. The momentum conservation law [Eq. (2)] is composed of the balance of 44	

(i) convective and (ii) local inertia with (iii) pressure, (iv) gravity and (v) friction forces. 45	

Whilst studies have demonstrated the feasibility of implementing the full Saint-Venant equations 46	

at regional scales (e.g. Paz et al., 2011; Paiva et al., 2013), the non-negligible increase of 47	

computational costs and input data constraints are still limiting factors for their implementation 48	

globally. In order to avoid these limitations, continental and global scale river routing schemes 49	

have been developed based on simplified relationships between water volume storage within a 50	

river reach and its outflow (Vorosmarty et al., 1989; Lohmann et al., 1996; Oki et al., 1998; 51	

Arora et al., 1999), the Muskingum method and variations (Collischonn et al., 2007; David et al., 52	

2011; Getirana et al., 2014a), the kinematic wave (KINE: Decharme et al., 2011; Getirana et al., 53	

2012; Li et al., 2015) and diffusive wave (DIFF: Yamazaki et al., 2011; Luo et al., 2017) 54	

methods. Such models have been useful in land surface model (LSM) evaluation (e.g. Getirana et 55	

al., 2014a,b,c, 2015, 2017), anthropogenic impacts on the water cycle (Haddeland et al., 2006; 56	

Hanasaki et al., 2006; Döll et al., 2009; Biemans et al., 2011), data assimilation experiments (e.g. 57	

Kumar et al., 2015, 2016), and global water budget accounting (Clark et al., 2015), amongst 58	

other applications. Most of existing global scale river routing schemes, in particular those 59	

coupled with general circulation models, still use KINE or more basic formulations (e.g. Miller 60	

et al., 1994; Decharme et al., 2011), insuring a low computational cost while providing spatial 61	

and temporal freshwater discharges from continents into the oceans accurate enough for climate 62	

modeling purposes.  63	



	 4	

More recently, Bates et al. (2010) and de Almeida et al. (2012) suggested a new explicit solution 64	

for the Saint-Venant momentum equation only neglecting the convective term (i). Compared to 65	

DIFF, it includes the local inertia term (ii), improving numerical stability and allowing 66	

simulations with longer time steps. The local inertia formulation (INER) has been implemented 67	

in the Catchment-Based Macro-scale Floodplain (CaMa-Flood: Yamazaki et al., 2011) river 68	

routing scheme and evaluated globally (Yamazaki et al., 2013). Yamazaki et al. compared the 69	

new formulation against DIFF in terms of numerical stability, and streamflow and water level 70	

simulations at selected gauges. Conclusions were that INER was capable of running global 71	

experiments at longer time steps while keeping numerical stability. The authors discuss how 72	

computational costs can be improved in further large-scale applications, but no quantitative 73	

information is provided. 74	

Although synthetic and small-scale experiments are the most common way to quantitatively 75	

compare flood modeling techniques (e.g. Bates & De Roo, 2000; Bates et al., 2010), 76	

comprehensive tradeoff evaluations in terms of cost and accuracy at the large scale are not 77	

commonly found in the literature. Additionally, to date, no detailed comparison between INER 78	

and KINE has been undertaken, and this therefore is the objective of this paper. Both 79	

formulations have been implemented in the Hydrological Modeling and Analysis Platform 80	

(HyMAP: Getirana et al., 2012) and are evaluated here using synthetic experiments and 81	

comparisons against observations over the Amazon basin. Experiments are designed with 82	

varying time steps, and efficiency is evaluated in terms of computational costs and accuracy in 83	

simulating streamflows and water levels. 84	
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Moussa and Bocquillon (1996) initially proposed a method that analyzes flows using Saint-85	

Venant equations as the superposition of a permanent regime and a perturbation of the 86	

steady uniform flow. Getirana and Paiva (2013) adapted the technique to map flood wave types 87	

at the large scale and evaluated it over the Amazon. They also highlighted the importance of 88	

using such maps in the development of models combining multiple formulations in order to 89	

minimize computational costs, but preserving accuracy. Indeed, combining methods with 90	

different levels of complexity has been a common practice in flood modeling to optimize 91	

computational costs. For example, Paiva et al. (2013) coupled the Muskingum-Cunge method 92	

(Cunge et al., 1980) and the full Saint-Venant equations in order to simulate the upper Amazon 93	

basin. Following that direction, a hybrid model (HYBR), combining both the kinematic wave 94	

equation and local inertia formulation, is also implemented in HyMAP and evaluated in this 95	

study. Although we acknowledge the existence of numerous flood modeling techniques, such as 96	

those listed earlier in the text, and also analytical solutions of the kinematic wave equation (e.g. 97	

Reggiani et al., 2014), we limited this comparison to the numerical solutions of KINE, INER and 98	

HYBR. This decision is based on the consideration that the kinematic wave and the local inertia 99	

formulation are both physically-based and represent extremes of the simplification spectrum of 100	

the full Saint-Venant equations. 101	

2. The HyMAP global-scale river routing scheme 102	

HyMAP is a global-scale river routing scheme composed of the following modules: (1) surface 103	

runoff and baseflow time delays; (2) river-floodplain interface; (3) flow in both river channels 104	

and floodplains; and (4) evaporation from floodplains.  105	
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The temporal change of water storage in rivers and floodplains of a grid cell, S, is defined by the 106	

continuity equation [Eq. (3)] considering LSM-based total runoff (after passing through time 107	

delay reservoirs), Qc, river and floodplain discharges to the downstream grid point, 𝑄!  and 𝑄! , 108	

and from the upstream grid points, 𝑄𝑢𝑝!  and 𝑄𝑢𝑝! , and evaporation from open waters (i.e. 109	

rivers and floodplains), E: 110	

𝑆!!!" = 𝑆! + 𝑄𝑐! + 𝑄𝑢𝑝!
!,! + 𝑄𝑢𝑝!

!,! − 𝑄!! − 𝑄!
! − 𝐸!

!,!!"#
!!! 𝑑𝑡  (3)  111	

where subscripts r and f represent river channel and floodplain variables, respectively. dt stands 112	

for time step and the index k the nUp upstream grid cells of the target grid point.  113	

Time delays are represented in HyMAP at the sub-grid-scale where, in each grid cell, both 114	

surface runoff and baseflow derived from LSMs pass through individual linear reservoirs with 115	

appropriate time-delay factors. The current HyMAP parameterization for the Amazon basin 116	

considers the baseflow time delay as 45 days. The surface runoff time delay Ts is computed for 117	

each grid cell following the Kirpich’s (1940) formula: 118	

𝑇! = 3600 0.868 !!
!

!!

!.!"#
       (4) 119	

where Δx [km] is the distance between the farthest point within a grid cell and its outlet, and Δh 120	

[m] is the difference between the maximum and minimum elevations of the pathway. This 121	

formula was initially developed for small agricultural areas, but has been satisfactorily applied to 122	

larger regions (e.g. Collischonn et al., 2007; Getirana et al., 2014a). Both linear reservoir outputs 123	

total the discharge produced in each grid cell, Qc [m3.dt-1], flowing to the river network.  124	
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Water overflows to floodplains when the river channel water height hr [m] is higher than the 125	

bank height, H. This process is considered instantaneous at each time step. This means that water 126	

surface elevations of the river channel and the floodplain are the same. Elevation profiles are 127	

used to represent floodplains. As a result, floodplain water extent and storage can be derived 128	

from the floodplain water elevation, hf.  129	

The river and floodplain water exchange at each time step is represented as follows: 130	

𝑖𝑓 𝑆!!!" ≤ 𝑆!"#$:  

𝑆!!!"! = 𝑆
ℎ!!!"! = 𝑆!!!"! 𝑊 ∙ 𝐿

𝑆!!!"
! = 0
ℎ!!!"
! = 0

	 	 	 	 	 	 (5) 131	

𝑒𝑙𝑠𝑒:  

𝑆!!!"! = 𝑆!!!" − 𝑆!!!"
!

ℎ!!!"! = 𝑆!!!"! 𝑊 ∙ 𝐿

𝑆!!!"
! = ℎ!!!"

! − ℎ 𝐴!!!"
! 𝑑𝐴!!!!

!

!

ℎ!!!"
! = ℎ!!!"! − 𝐻

     (6) 132	

where S [m3] stands for the total water storage in the grid cell, Sr [m3] and Sf [m3] the river 133	

channel and floodplain water storages, hr [m] and hf [m] river water depths, W [m] the river 134	

width, L [m] the river length and Af [m2] the flooded area. Sr max [m3] stands for the river bankfull 135	

water storage, and is given as Srmax=H×W×L, where H [m] is the river bankfull height. 136	

Using the kinematic wave equation, considering a rectangular river cross section and large 137	

width-to-depth ratio, water discharge through a grid cell river reach at time step t+dt, Qt+dt [m3·s-138	

1], can be defined as  139	

𝑄!!!" =
!
!
∙ 𝑖!
! ! ∙𝑊 ∙ ℎ!

! !       (7) 140	
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where n is the Manning roughness coefficient. i0 is derived from topographic information and 141	

corresponds to the slope between the target and downstream grid cells. A minimum i0 threshold 142	

of 10-5m.m-1 is used in order to avoid negative or very small topography slope caused by DEM 143	

errors.  144	

Following the explicit solution presented in Bates et al. (2010) and improved in Almeida et al. 145	

(2012), the local inertia formulation, for the same river cross sections defined above, can be 146	

defined as  147	

𝑄!!!" =
!!!!∙!!∙!"∙!!

!!!∙!"∙!! ∙!! !!
!" !    (8) 148	

For HyMAP to be run in hybrid mode, a map determining the spatial distribution of flow types 149	

has to be provided. 150	

In HyMAP, rivers and floodplains flow independently from a grid cell to another, and have their 151	

hydrodynamics calculated separately using their own channel characteristics, but the same 152	

equations. At each time step, the average floodplain width, depth and bed height are defined as  153	

𝑊! =
!!
!

    (9) 154	

ℎ! =
!!
!!

    (10) 155	

𝑧! = 𝑧! + ℎ! − ℎ!   (11) 156	

For the kinematic wave equation, i0 is considered the same for both rivers and floodplains. River 157	

width W and bankfull height H are both defined based on empirical relationships with long-term 158	

average discharges, and the Manning coefficient of river channels nr [-] varies as a function of H. 159	



	 9	

The Manning coefficient for floodplains, nf [-], is spatially distributed as a function of vegetation 160	

types derived from a static map (Masson et al. 2003), where larger values correspond to dense 161	

vegetated areas and lower values to sparser vegetated regions. More details on HyMAP 162	

parameterization are found in Getirana et al. (2012; 2013). 163	

2.1. Optimal time step for numerical stability  164	

The Courant–Freidrichs–Levy (CFL) condition is used in order to determine the optimal time 165	

step for numerical stability for INER: 166	

 𝐶! =
!"#
!"

   (12) 167	

where Cr stands for the non-dimensional Courant number and V is a characteristic velocity [m.s ︎
-

168	

1
]. Numerical stability is obtained when Cr is less than 1. V can be defined for the local inertial 169	

form of the shallow water equations as (Bates et al., 2010):  170	

𝑉 = 𝑔ℎ   (13) 171	

Eq. (12) can be rewritten as follows, defining the maximum time step needed to keep numerical 172	

stability: 173	

𝑑𝑡!"# = 𝛼 !"
!!!

   (14) 174	

where 𝛼 is a coefficient that is used to ensure that the selected time step remains at all times 175	

smaller than the maximum threshold for stability. Eq. (14) has been implemented in HyMAP to 176	

determine optimal time intervals and 𝛼 was set as 0.9 for all experimental runs (i.e. the actual 177	

time step used is 90% of the theoretical maximum). 178	
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3. Experimental design 179	

Experiments are designed with the following objectives: (i) to quantify the gains of using the 180	

more complex INER formulation over the simplified KINE, in terms of accuracy in simulating 181	

water levels and streamflows; (ii) to evaluate the sensitivity of both formulations to model time 182	

steps; and (iii) to determine the added value in considering a hybrid model HYBR that combines 183	

both formulations.  184	

The evaluation is performed in terms of accuracy and computational costs and is composed of 185	

two stages: (1) synthetic experiments and (2) evaluation against observations. In stage 1, model 186	

accuracy is quantified using the root mean square error (RMSE) against a control simulation. 187	

Computational costs are determined in terms of time needed to run the model (excluding 188	

initialization and input/output processing). Synthetic experiments are based on the Amazon basin 189	

and performed for two years (1999-2000), after a 1-year spin up.  The same initial condition is 190	

used in all experiments. The INER experiment at 60s time step is considered as the control 191	

simulation for synthetic experiments, as will theoretically be the highest quality simulation, and 192	

the evaluation is performed in terms of streamflows and river water depths/water elevations. In 193	

order to evaluate the sensitivity to time steps, five realizations are performed for INER and 194	

KINE, and the following intervals considered: 60s, 120s, 300s, 600s and 1200s. For consistency, 195	

intervals are fixed for each run. This means that dtmax is computed for each run with Eq. (14), but 196	

not used to constrain time steps. 197	

Although ocean tides play an important role in river dynamics near the outlet, they have been 198	

neglected in this study. Thus, the downstream boundary water elevation at the Amazon River 199	

mouths is set to zero meters constant over time.  200	
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In stage 2, the evaluation against observations has been performed for the 2002-2008 period 201	

using daily ground-based streamflow observations at 144 gauges and satellite-based water 202	

elevations at 396 locations (see Fig. 1 for locations). Runs have been performed at a 15-minute 203	

time step. Streamflow gauges are operated by the Brazilian Water Agency (Agencia Nacional de 204	

Aguas – ANA) and the water elevation dataset was derived from the Envisat satellite and is 205	

available on the Hydroweb website (Cretaux et al., 2011). Envisat operated from 2002 to 2010 at 206	

a 35-day cycle and absolute water elevation errors within the Amazon basin are on the order of 207	

tens of centimeters (Da Silva et al., 2011).  208	

Daily streamflow is evaluated using the Nash-Sutcliffe (NS) coefficient: 209	

𝑁𝑆 = 1− !!!!! !!"
!!!

!!!!! !!"
!!!

    (15) 210	

where t is the time step, and nt represents the total number of days with observed data. The 211	

variables x and y are, respectively, the simulated and observed signals at time step t, while ymax, 212	

ymin and 𝑦 represent the respective maximum, minimum and mean values of the target signals for 213	

the entire period. NS ranges from -∞ to 1, where 1 is the optimal case, while zero means that 214	

simulations represent observed signals as well as the average of observations. NS of anomalies 215	

(NSA) is used to evaluate bias-corrected river water depth simulations against satellite-based 216	

water elevations (Getirana et al., 2013). Bias correction was performed as a solution to eliminate 217	

datum differences and eventual errors in the DEM, satellite observations, riverbed height 218	

estimates and river width. NSA is defined as follows: 219	

𝑁𝑆𝐴 = 1− !!!!! ! !!!!! !!"
!!!

!!!!! !!"
!!!

    (16) 220	
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where 𝑥 stands for the mean value of the simulated signal for the entire period. 221	

HyMAP runs over the Amazon basin at 0.25° spatial resolution and simulations were performed 222	

using a single 2.6 GHz Intel Xeon Haswell processor on the NASA Center for Climate 223	

Simulation’s Discover system. Daily surface runoff and baseflow were derived from a long term 224	

run using the Noah 3.3 LSM (Ek et al., 2003) forced with the Princeton University 225	

meteorological dataset (Sheffield et al., 2006), with a rescaled precipitation matching the ORE-226	

HYBAM (Observatoire de Recherche en Environnement - Hydrologie du Bassin de l’Amazone; 227	

Guimberteau et al., 2012) dataset. Details on the LSM run can be found in Getirana et al. 228	

(2014b). All model runs were executed in the NASA Land Information System (LIS: Kumar et 229	

al., 2006).  230	

4. Results and discussion 231	

4.1. Synthetic experiments 232	

According to results presented in Fig. 2, KINE satisfactorily represents the hydrodynamics in 233	

most of the basin, with low RMSE values for both river water depth and streamflow simulations. 234	

However, a significant deterioration of these variables along the Amazon River and main 235	

tributaries is observed, as represented by the darker colors in the figures. This deterioration is 236	

more evident near the basin’s outlet, which could be due to the incapacity of KINE to represent 237	

backwater effects. In terms of river water depths, KINE at dt=60s results in mean RMSE values 238	

of ~19cm, relative to INER at dt=60s, with a maximum value reaching ~1379cm. Average and 239	

maximum RMSE values for streamflows are ~52m3.s-1 and ~7827m3.s-1, respectively. 240	
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In terms of time step impacts on model accuracy, even though KINE runs result in deteriorated 241	

RMSE values over main rivers, additional realizations confirm the low model sensitivity to 242	

longer dt, resulting in very similar coefficient values for river water depths and streamflows. For 243	

example, mean RMSE values for simulations at dt=10800s are 19.93cm and 52.97m3.s-1, 244	

respectively. This represents nominal degradations of 3.6% and 1.3%, compared to the 245	

experiment at dt=60s. Realizations performed with INER show that time steps up to 900s result 246	

in gradual, but still nominal, changes in RMSE values for both variables, as shown in Fig. 3. The 247	

INER realization at 1200s time step presents non-negligible deterioration, mostly occurring in 248	

the lower and central Amazon and Negro Rivers, and lower Madeira River. On the other hand, 249	

INER in CaMa-Flood is stable at that time step and spatial resolution (Yamazaki et al., 2013). In 250	

that sense, further investigation was carried out in order to identify the reason why such a 251	

limitation occurs in HyMAP. Similar simulations considering static floodplains (i.e. no flow in 252	

floodplain from a grid cell to another) were performed in order to determine the sensitivity of 253	

such a configuration to time step. As a result, it was verified that simulations with static 254	

floodplains are stable with dt≤1800s, meaning that the deterioration observed in INER runs at 255	

1200s are due to numerical instability caused by more restrictive CFL conditions in the 256	

floodplain dynamics. Indeed, this empirical result matches with the CFL condition, computed for 257	

the whole experimental period, which shows that the maximum stable time step for HyMAP runs 258	

over the Amazon at 0.25 degrees using the local inertia formulation and floodplain dynamics is 259	

1200s. It is worth noting that HyMAP and CaMa-Flood use different river network 260	

parameterizations, and that difference may play a major role in computing optimal time steps.  261	

Computational costs for running HyMAP for two years are linearly proportional to the number of 262	

time steps used in the realizations. INER costs varied from 1017 seconds at dt=60s to 51 seconds 263	
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at a dt=1200s (see Table 1 for computational cost and accuracy summary). This is 25% longer 264	

than the corresponding realizations with KINE (812 and 41 seconds, respectively). However, 265	

since the kinematic wave shows low sensitivity to longer time steps, one could obtain similar 266	

errors with time steps as long as 10800s (or more), as shown in Table 1. This means that 267	

significantly cheaper runs (at least 15 times faster) can provide outputs with the same margin of 268	

error. At dt=900s (the longest time step for INER with demonstrated stability), the mean RMSE 269	

for bias-corrected river water depths is 0.03cm, with a maximum value of 0.5cm. For 270	

streamflows, values are 0.17m3.s-1 and 62.3m3.s-1, respectively, which are nominal compared to 271	

the absolute numbers of each variable.  272	

Flow type maps applied to HYBR were generated based on absolute values of differential RMSE 273	

( Δ𝑟𝑚𝑠𝑒 = 𝑟𝑚𝑠𝑒!"#$ − 𝑟𝑚𝑠𝑒!"#$ ) between KINE and INER at dt=60s. Five Δ𝑟𝑚𝑠𝑒  274	

thresholds were considered in order to determine their spatial distribution: 1cm, 5cm, 10cm, 275	

15cm and 20cm. These values represent a good flow type distribution spectrum for HYBR. Fig. 276	

4 shows maps with the spatial distribution of different flow types and their respective fractions 277	

within the Amazon basin. As shown in the figure, the fraction of pixels within the basin being 278	

represented by the kinematic wave equation (fKINE) exponentially increases with Δ𝑟𝑚𝑠𝑒  279	

threshold limits. fKINE covers 35.6% of the basin if the threshold is 1cm (i.e. Δ𝑟𝑚𝑠𝑒 ≤ 1𝑐𝑚 is 280	

considered as an acceptable error), mostly representing headwater grid cells. The fractions 281	

increase to 63.5% for 5cm and to 82.8% for 20cm.  282	

The local inertia formulation is not as used over the basin when thresholds increase, except along 283	

main rivers and main tributaries. Computational costs are linearly related to fKINE, varying from 284	

858.1 seconds to 962.6 seconds (in comparison to 1018.3 and 809.7 seconds for INER and 285	

KINE, respectively). As shown in Fig. 5, mean RMSE values vary from 0.12cm to 2.91cm for 286	
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river water depths and from 0.10m3.s-1 to 5.30m3.s-1 for streamflows, demonstrating a significant 287	

improvement in accuracy when compared to KINE.  288	

Fig. 6 shows the Amazon River water elevation profile, from its headwater to the outlet, 289	

simulated with INER, and errors using KINE and HYBR composed of four flow type maps 290	

( Δ𝑟𝑚𝑠𝑒  thresholds at 1cm, 5cm, 10cm and 20cm). Errors use the INER run as the reference. 291	

Profiles are averaged for two seasons: austral fall (April to June, or AMJ), and spring (October to 292	

December, or OND). The selected periods respectively coincide with the high (or humid season) 293	

and low (dry season) water discharge periods at the outlet. RMSE values for KINE are 4.94m for 294	

AMJ and OND, respectively. High inaccuracy is observed in flat central and lower parts of the 295	

river, where both the pressure force and inertia are more predominant. In the steep upper part of 296	

the river, gravity and friction forces mainly control flow dynamics, hence KINE results in much 297	

lower errors. It is worth noting the backwater effect in the lower part of the river in terms of 298	

absolute errors. During the dry season, higher water elevations due to the ocean’s backwater 299	

effect are represented with INER. On the other hand, KINE neglects this effect, resulting in 300	

lower water elevations represented by the negative errors, as shown in the figure. 301	

Amazon River water elevations simulated by HYBR show significantly lower errors when 302	

compared to KINE. RMSE values vary from 4.3cm ( Δ𝑟𝑚𝑠𝑒 ≤ 1𝑐𝑚) to 6.5cm ( Δ𝑟𝑚𝑠𝑒 ≤303	

20𝑐𝑚) for AMJ, and from 2.1cm to 3.4cm during the OND period. It is observed that errors 304	

occur in the upstream region, where the kinematic wave equation is used. That error is not 305	

noticeable in KINE due to the much larger scale used to show its results. There is also a nominal 306	

error along the central and lower parts of the river (slightly positive and negative for AMS and 307	

OND, respectively), explained by the error propagation from the mainstream headwaters and 308	

other tributaries.  309	
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4.2. Evaluation against ground and satellite observations 310	

According to Fig. 7, NS values are usually higher in the main rivers and deteriorate near 311	

headwaters. This is mostly caused by inaccuracies in both the meteorological forcings and LSM 312	

transfers to the river routing scheme, as previously discussed in Getirana et al. (2014b). 313	

Comparisons between daily streamflow simulations and observations at 144 gauges show a slight 314	

improvement of 0.01 in the mean NS in the realization using INER. However, differences are 315	

variable across the basin. At Óbidos, the station draining most of the Amazon basin, located 316	

about 800 km upstream from the river mouth, NS values using KINE, INER and HYBR are 0.90, 317	

0.91 and 0.91, respectively. In general, both INER and HYBR performed better in the 318	

mainstream, and lower parts of Tapajos, Madeira and Purus Rivers. Streamflows derived from 319	

HYBR do not show any significant change compared to INER. Such a small average difference 320	

of NS is mostly due to the fact that daily time series of streamflow observations are only 321	

available where backwater effects are minor or nonexistent. This is explained by the fact that 322	

such a variable is derived from rating curve relations where the actual observable variable is 323	

river water depth, and that rating curves are only efficiently applicable in steady flow regimes 324	

(Fenton et al., 2001).  325	

Unlike streamflow observations, radar altimetry enables evaluation of surface water dynamics at 326	

any location where satellite tracks intersect water bodies. The 396 radar altimetry stations cover 327	

most of the Amazon River and main tributaries, providing us with a detailed picture of how the 328	

different methods compare against each other in terms of simulated river water depths. NSA 329	

coefficients for river water depths are significantly improved throughout the basin when INER is 330	

used compared to KINE (see Fig. 8). The average improvement in NSA is 0.37, with differences 331	

mostly present near outlets and confluences, as expected. HYBR, with 64% represented as 332	
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kinematic wave equation, results in similar performance coefficients to INER, with a differential 333	

NSA of 0.37. This reaffirms the efficiency of a hybrid model in reducing computational costs 334	

and keeping relatively high metrics in terms of both streamflows and river water depths.  335	

It is also observed that some locations resulted in efficiency deterioration (negative differential 336	

NS and NSA) for both INER and HYBR when compared to KINE. Plausible explanations for 337	

such deterioration could be errors in meteorological forcings, limited representations of physical 338	

processes in LSMs that are transferred to the river routing scheme. This error transfer may result 339	

in random improvements when combined with river routing scheme errors (i.e. errors in the 340	

DEM and river geometry parameters). Errors are also explained by both numeric limitations in 341	

HyMAP and inaccuracy in the observed data.  342	

Fig. 9 shows bias-corrected daily water elevation time series at the six radar altimetry stations 343	

indicated in Fig. 1. Bias values are listed in Table 2 for each location and experiment. Stations 344	

were intentionally selected near outlets and confluences in order to expose the improvements 345	

obtained using INER. Selected stations are located in the (1) Amazon, (2) Xingu, (3) Tapajos, (4) 346	

Madeira, and (5) Negro Rivers and (6) the Solimões near its confluence with the Negro River.  347	

Improvements obtained with both INER and HYBR are clearly noticed at all selected radar 348	

altimetry stations. In particular, at station 1, located near the Amazon River outlet, where river 349	

flow is highly impacted by the ocean level, both resulted in smoothed water level changes, 350	

agreeing with satellite observations. On the other hand, KINE fails in properly simulating water 351	

level amplitudes. NSA coefficients are 0.91 for the first two experiments, and -6.50 for KINE. 352	

Similar behaviors are noticed at other stations, where INER and HYBR resulted in attenuated 353	

amplitudes relative to observations. At station 5, both experiments show improvements in the 354	
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peak amplitude and timing, when compared to KINE, resulting in an NSA increase from 0.11 to 355	

0.73. Although improvements are clear, it is noticeable that INER still fails in representing 356	

observed amplitudes at some locations. This is particularly noticeable at stations 2, 3 and 5 and 357	

could be explained by limitations in the river geometry parameterization, such as inaccurate river 358	

width and slope estimates.  359	

5. Summary 360	

In the past decades, the kinematic wave equation has been widely preferred in large-scale river 361	

routing schemes for its easy implementation and reduced computational costs. The development 362	

of more sophisticated river flow modeling methods, such as the local inertia formulation, has 363	

allowed the scientific community to more accurately represent surface water dynamics. Global 364	

applications of such new formulations are feasible, but increased computational costs limit the 365	

spatial and temporal resolutions. This study evaluates the latter method compared to the 366	

kinematic wave equation in terms of precision and computational costs. It also proposes a hybrid 367	

model composed of both formulations, where costs can be reduced, maintaining a high accuracy. 368	

The spatial distribution of methods in the hybrid model is determined as a function of differential 369	

water level RMSE values between INER and KINE runs at 60s time step, based on the principle 370	

that river dynamics can be numerically represented by the Saint-Venant equation in a satisfactory 371	

way at different levels of complexity determined by dominant flow characteristics (Moussa and 372	

Bocquillon, 1996). The evaluation was performed over the Amazon basin in terms of streamflow 373	

and water levels and was composed of two steps: (1) accuracy and cost evaluation through 374	

synthetic experiments and (2) comparison against in situ and satellite observations. Synthetic 375	

experiments considered INER at dt=60s as the reference, and comparisons against observations 376	

used 15-minute time step runs. 377	
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KINE runs result in large RMSE values along the Amazon River and main tributaries, in 378	

particular near the basin’s outlet, but these simulations are at least 25% cheaper than the local 379	

inertia formulation. INER is numerically stable at time steps lower than 20 minutes. At that time 380	

step, a more restrictive CFL condition imposed by the floodplain dynamics limits HyMAP run 381	

numerical stability. This is confirmed with the additional adaptive time step run using the CFL 382	

condition. On the other hand, KINE shows low model sensitivity to longer time steps, as 383	

expected, allowing dt as large as three hours with nominal impacts on accuracy. Accuracy was 384	

significantly improved with HYBR when compared to KINE, in cases where the local inertia 385	

formulation is used in about one third of the basin, with nominal computational cost increase. 386	

Comparisons against in situ and satellite observations show a small overall improvement in 387	

simulated streamflows when either INER or HYBR are used, but a significant improvement in 388	

water level along main river and tributaries. A possible explanation for such differences in 389	

performances is the limited availability of streamflow observations in locations where backwater 390	

effects are dominant.  391	

Overall, there is a tradeoff between KINE and INER, and users should choose between accuracy 392	

(particularly in locations with predominately diffusive hydraulic processes, such as flat areas) 393	

and computational cost. However, combining both the kinematic wave and the local inertia 394	

formulations based on flow type maps may result in an optimal compromise between efficiency 395	

and computational costs. It is worth noting that the computational cost for runs shown in Table 1 396	

are generally low due to the domain size, spatial resolution and timespan. In particular, costs 397	

increase exponentially with increasing spatial resolutions. Long-timespan high-resolution global 398	

runs would require a much higher computer power and the additional computational cost could 399	

be a critical factor in determining which method to be used. Finally, considering that using the 400	
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kinematic wave equation with longer time steps can minimize computational costs preserving 401	

numerical stability, future developments could focus on more cost-efficient hybrid models, 402	

where spatially distributed time steps would be based on flow types. 403	
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Table 1. Synthetic experimental design overview. Computational costs are for two years of 538	

simulation and RMSE values are averages for the whole basin, computed relative to INER 539	

outputs at dt=60s.  540	

Equation Time step 
[s] 

Computational 
cost [s] 

Mean RMSE for 
water level [cm] 

Mean RMSE for 
streamflow [m3.s-

1] 
Local inertia 60 1018.3 0 0 
Local inertia 120 506.0 0.01 0.22 
Local inertia 300 205.7 0.03 0.28 
Local inertia 600 102.7 0.06 0.41 
Local inertia 900 68.7 0.09 0.55 
Local inertia 1200 51.3 1.42 26.31 
Kinematic wave 60 809.7 19.22 52.27 
Kinematic wave 120 412.1 19.22 52.30 
Kinematic wave 300 163.3 19.23 52.28 
Kinematic wave 600 82.4 19.23 52.26 
Kinematic wave 900 55.1 19.24 52.25 
Kinematic wave 1200 41.0 19.25 52.24 
Kinematic wave 1800 27.2 19.27 52.23 
Kinematic wave 3600 13.7 19.34 52.24 
Kinematic wave 7200 6.8 19.57 52.37 
Kinematic wave 10800 4.6 19.93 52.97 
Hybrid ( Δ𝑟𝑚𝑠𝑒 ≤ 1𝑐𝑚) 60 962.6 0.12 0.10 
Hybrid ( Δ𝑟𝑚𝑠𝑒 ≤ 5𝑐𝑚) 60 902.9 0.84 1.12 
Hybrid ( Δ𝑟𝑚𝑠𝑒 ≤ 10𝑐𝑚) 60 883.1 1.64 2.47 
Hybrid ( Δ𝑟𝑚𝑠𝑒 ≤ 15𝑐𝑚) 60 874.5 2.33 3.79 
Hybrid ( Δ𝑟𝑚𝑠𝑒 ≤ 20𝑐𝑚) 60 858.1 2.91 5.30 

541	
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Table 2: Bias correction in meters applied to simulated water elevations at each of the six 542	

selected locations shown in Figs. 1 and 9. INER and HYBR outputs have the same bias 543	

corrections. 544	

Location KINE INER/HYBR 
1 (Amazon) 9.32 3.61 
2 (Xingu) 1.70 1.05 
3 (Tapajos) 3.52 2.64 
4 (Madeira) 10.35 8.31 
5 (Negro) 10.20 6.13 
6 (Solimões) 9.05 10.19 
 545	
	546	

547	
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Fig. 1: Location of radar altimetry and in situ gauges used in the model evaluation. The location 548	

of Óbidos (black triangle) and six radar altimetry stations (black circles) mentioned in the 549	

discussion are highlighted. 550	

Fig.2: Root mean square error (RMSE) spatial distribution derived from kinematic wave 551	

equation experiments at variable time steps (dt), from 60 to 10800 seconds, for river water 552	

depths (top) and streamflows (bottom). 553	

Fig. 3: Root mean square error (RMSE) spatial distribution derived from local inertia 554	

formulation experiments at variable time steps (dt), from 120 to 1200 seconds, for river water 555	

depths (top) and streamflows (bottom). 556	

Fig. 4: Flow type maps within the Amazon basin based on Δrmse  thresholds. White and black 557	

represent areas simulated using the kinematic wave equation and the local inertia formulation, 558	

respectively.  559	

Fig. 5: Root mean square error (RMSE) spatial distribution derived from hybrid model 560	

experiments at dt=60s and variable Δrmse  thresholds, from 1 to 20 cm, for river water depths 561	

(top) and streamflows (bottom). 562	

Fig. 6: Average water elevation profile of the Amazon River for Austral Fall (AMJ) and Spring 563	

(OND) averages (1999-2000 period) simulated by the local inertia formulation (top), and errors, 564	

relative to the local inertia experiment, resulting from the kinematic wave equation (middle) and 565	

the hybrid model composed of four flow type maps with Δrmse  thresholds at 1cm, 5cm, 10cm 566	

and 20cm (bottom).  567	
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Fig. 7: Nash-Sutcliffe (NS) coefficients of daily streamflows at 144 gauges within the Amazon 568	

basin: absolute values using the kinematic wave equation (left); and the differences between the 569	

kinematic wave and local inertia formulation (center) and the hybrid model (right).  570	

Fig. 8: As Fig. 7, but for Nash-Sutcliffe coefficients of river water depth anomalies (NSA) at 396 571	

locations within the Amazon basin.  572	

Fig. 9: Water elevation derived from Envisat and simulated by HyMAP using the kinematic 573	

wave equation (KINE), the local inertia formulation (INER) and the hybrid model (HYBR) at 574	

Δrmse ≤ 5cm. Simulated water elevations are bias-corrected to match the Envisat mean. The 575	

locations are shown in Fig. 1. 576	
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